Discrete Structures

Name:

Application No:

1. The number of edges in a forest on n vertices containing k trees is
(Note: Forest is a graph, whose connected components are trees)
2. A graph is said to be acyclic if it contains no cycles. A bipartite graph is a graph in which the vertex set can be partitioned into two such that no two vertices within the same partition are adjacent. Which of the following statements is(are) true?

Every cycle graph with an even number of vertices is bipartite
Every bipartite graph is a connected acyclic graph
Every connected acyclic graph is a bipartite graph
All complete graphs on at least 5 vertices are not bipartite
3. A graph has 24 edges and the degree of each vertex is k, then which of the following is the possible number of vertices? Select the most appropriate answer(s) only.
$\square 9 \square 8 \quad \square 10 \square 20$
What is the value of k for the selected number of vertices? Give a proper justification.

Ans: k=

Justification:

4. Consider the below First Order Logic with predicates:
$\operatorname{car}(\mathrm{x})$: x is a car,
train(x): x is a train,
slower (x, y) : x is slower than y

Statement: $\exists x(\operatorname{car}(x) \wedge \forall y(\operatorname{train}(y) \rightarrow \operatorname{slower}(x, y)))$ when translated to simple english is

Ans:

Note: Do not use 'exists' or 'forall' words in your translation.
5. Given a set $\{1,2, \ldots, 1000\}$ of integers. How many are divisible by 3 or 5 ? Justify.
6. The maximum number of edges in a simple graph with 10 vertices and 4 connected components is
Ans:

Justification:

7. Three fair dice are thrown simultaneously. Find the probability that all three dice have the same number on the faces showing up is \qquad Justification:
8. A fair die with faces $\{1,2,3,4,5,6\}$ is thrown repeatedly till ' 4 ' is observed for the first time. Let X denote the number of times the dice is thrown. The expected value of X is \qquad Justification:
9. In a housing society, half of the families have a single child per family, while the remaining half have two children per family. The probability that a child picked at random has a sibling is \qquad Justification:
10. Passengers try repeatedly to get a seat reservation in any train running between two stations until they are successful. If there is a 40% chance of getting a reservation in any attempt by a passenger, then the average number of attempts that passengers need to make to get a seat reserved is \qquad Justification:
