1. The following recursive function in C language computes the factorial of a number. For example fact $(5)=5^{*} 4^{*} 3^{*} 2^{*} 1=120$. Fill in the blanks to make this recursive function working. (marks: 1.5)
```
int fact(int num) {
    if(
```

\qquad

``` (i)
``` \(\qquad\)
``` ) \{ return
``` \(\qquad\)
``` (ii)
``` \(\qquad\)
``` ;
\} else num;
```

\}
2. The following function is supposed to reverse a given integer number. Fill in the code to enable the function to do that. (marks: 2)
Note: Do not declare any new variable. Write only 2 statements to complete the code.

```
int reverse(int num) {
    int rev= 0;
    while (num > 0) {
```

\qquad

``` (i)
``` \(\qquad\)
``` ;
```

\qquad

``` (ii)
``` \(\qquad\)
```

    }
    return rev;
    }
    ```
3. Complete the following function to print the number triangle num_triangle(4) gives

1
121
12321
1234321

\section*{(marks: 2)}
```

void num_triangle(int range) {
for(int i=1; i<=range; i++) {
for(

```
\(\qquad\)
``` (i)
``` \(\qquad\)
``` printf(" ");
```

```
                            for(
```

\qquad

``` (ii)
``` \(\qquad\)
``` )
                                    printf("%d", j);
for(____(iii)
```

\qquad

``` _)
        printf("%d", k);
        printf("\n");
    }
}
```

4. Write a function in C language to simulate a biased coin (will get head with probability p and tail with probability 1-p). Let the function be int tossBiasedCoin (double p) which returns 1 if it is head and 0 if it is tail. Assume that you are given a function rand() which returns a number between 0 and 1 (precision: 1 decimal place) with equal probability. (marks 3)
5. Write a C function to find node in a graph with maximum degree and return the degree of that node.
\#define MAX_NODES 100
int findMaxDegree(int adjMatrix[MAX_NODES][MAX_NODES], int numNodes)

This function takes the adjacency matrix and the number of nodes as argument and returns the maximum degree. (marks 1.5)

