CS2001D LOGIC DESIGN

Prerequisites: NIL

Total Hours: 52
Course Outcomes:

Students will be able to :

CO1: Learn and understand various number systems and their applications in digital design.
CO2: Design and implement logic functions utilizing logic gates and programmable logic.
COa3: Learn and understand HDLs used to implement digital systems.

CO4: Design simple digital systems using HDLs.

Module 1: (13 Hours)

Number systems and codes, Boolean algebra: postulates and theorems, constants, variables and functions,
switching algebra, Boolean functions and logical operations, Karnaugh map: prime cubes, minimum sum of
products and product of sums, Introduction of HDLs and their syntax.

Module 2: (13 Hours)
Quine-McCluskey algorithm, prime implicant chart, cyclic prime implicant chart, Petrick's method,
Combinational Logic: introduction, analysis and design of combinational logic circuits, parallel adders and

look-ahead adders, comparators, decoders and encoders, code conversion, multiplexers and
demultiplexers, parity generators and checkers

Module 3: (13 Hours)

Programmable Logic Devices, ROMs, PALs, PLAs, PLA folding, design for testability. Introduction to
sequential circuits, memory elements, latches

Module 4: (13 Hours)

Flip-flops, analysis of sequential circuits, state tables, state diagrams, design of sequential circuits,
excitation tables, Mealy and Moore models, registers, shift registers, counters

References:
1. T.L.Floyd and R. P. Jain, Digital Fundamentals, 8/e, Pearson Education, 2006.
2. C.H.Roth, Jr., and L. L. Kinney, Fundamentals of Logic Design, 6/e, Cengage Learning, 2009.
3. M. M. Mano and M. D. Ciletti, Digital Design, 4/e, Pearson Education, 2008.
4. B. J. LaMeres, Introduction to Logic Circuits & Logic Design with Verilog, 1/e, Springer, 2017.

CS2003D INTRODUCTION TO PROGRAMMING

Prerequisites: NIL

Total hours: 39T + 26P
Course Outcomes:
Students will be able to

CO1: Design and implement programs for simple computational problems.

CO2: Design programs for implementing elementary data structures and algorithms for standard computing
problems.

CO3: Analyze the time complexity of simple algorithms.

Module 1: (13T+8P Hours)

Review of programming: Data types, Identifiers and keywords, variables, constants, arrays, expressions
and statements, iterative and conditional constructs, break and continue, input and output statements,
programming examples, bubble sort, insertion sort, sequential and binary search.

Module 2: (13T+10P Hours)

Introduction to complexity analysis: asymptotic notation and simple examples of analysis of iterative
algorithms like bubble sort, insertion sort and binary search.

Subroutines: functions and parameter passing, call semantics, recursion, programming examples with
recursive programs, recursive programs for binary search, quicksort, merge sort and heapsort. Complexity
analysis of recursive programs using recurrences.

Module 3: (13T+8P Hours)

Structures and unions, pointers and dynamic memory allocation, programming examples: linked list, stack
and queue implementation using linked lists, binary search trees, recursive inorder, preorder and postorder
traversals, evaluation of arithmetic expressions.

References:

1. W. Kernighan, The Practice of Programming, Addison-Wesley, 1999.

2. A.V.Aho, J. E. Hopcroft, and J. D. Uliman, Data Structures and Algorithms, Addison-Wesley, 1983.

3. T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Infroduction to Algorithms, 3/e, MIT
Press, 2009.

MA6223D DISCRETE MATHEMATICS

Prerequisites: NIL

Total hours: 39

Course Outcomes:

Students will be able to

CO1: have sufficient knowledge about Propositional calculus and predicate calculus

CO2: have knowledge about relations, functions partial order and Boolean algebra

CO3: understand the concepts of semigroups, monoids, groups and sub groups

CO4: have knowledge about Rings, Integral domains, fields and field extensions

Module 1: (10 hours)

Propositional Calculus: Propositions, Truth tables , tautologies and contradictions, logical equivalence,
logical arguments, normal forms, consistency completeness and independence, formal proofs , natural
deduction. Predicate Calculus: predicates, quantifiers, arguments, theory of inference, resolution algorithm.

Module 2: (10 hours)

Relations and functions, pigeonhole principle, cardinals, countable and uncountable sets, diagonalization,
equivalence relations and partitions, partial order, lattices, Boolean Algebra.

Module 3: (10 hours)

Semi groups, monoids, groups and subgroups, homomorphism, cosets, normal sub groups, products and
quotients, Lagrange’s theorem, permutation groups, Cayley’s theorem.

Module 4: (9 hours)

Rings, Integral domains, fields, ideals and quotient rings, Euclidean domain, polynomial rings, division
algorithm, field factorization, unique factorization, field extensions.

References

—_

P. Grimaldi, Discrete and Combinatorial Mathematics, Addison Wesley, 1994.

2. J. P. Tremblay and R. Manohar, Discrete Mathematical Structures with applications to Computer
Science, Tata McGraw Hill, New Delhi, 2003.

3. B. Kolman and R. C. Busby, Discrete Mathematical Structures for Computer Science, PHI, 1994,

4. C.L. Liu, Elements of Discrete Mathematics, 2/e, Mcgraw Hill, 1985.

5. J. L. Mott, AKandel, and T.P Baker, Discrete Mathematics for Computer Scientists and
Mathematicians, 2/e, PHI, 1986.

6. J.K. Truss, Discrete Mathematics for Computer Scientists, Addison Wesley, 1999.

7. 1. N. Herstein, Topics in Algebra, Wiley Eastern, 1975.

MAG6020D STATISTICAL METHODS

Prerequisites: NIL

Total hours: 39
Course Outcomes:
Students will be able to

CO1: Handle problems involving random variables and functions of random variables.

CO2: Identify statistical problems and make use of statistical inference for decision making or choosing
actions.

CO3: Collect and analyze data for extracting useful information.

CO4: Apply regression and correlation analysis for studying relationship between variables.

CO5: Use probabilistic and statistical analysis in various applications of engineering.

Module 1: (15 hours)

Probability distributions:- Introduction to Probability, Definitions and basic results, conditional probability
and independence, Random variables, Mean and variance, Discrete probability distributions-Binomial
distribution, Hyper- geometric distribution, Poisson distribution, Geometric distribution. Continuous
probability distributions- Normal Distribution, Uniform distribution, Gamma distribution, Chi-Square
distribution, Joint distribution of random variables.

Module 2: (12 hours)

Statistical inference I:- Population and samples, The sampling distribution of the mean (6% known and §2
unknown), Sampling distribution of the variance, Point estimation and interval estimation, Tests of
hypothesis, Hypothesis concerning one mean, Inference concerning two means. Estimation of variances,
Hypothesis concerning one variance, Hypothesis concerning two variances.

Module 3: (12 hours)

Statistical Inference Il — Inference concerning one proportion and two proportions, Analysis of r x ¢ tables,
Chi — square test for goodness of fit. Curve fitting by the method of least squares, Fitting straight lines,
parabolas and other non-linear curves, Simple linear regression models, Inference concerning Correlation
coefficient.

References:

1. R. A.Johnson and C. B. Gupta, Miller & Freund’s Probability and Statistics for Engineers, Tle,
Pearson Education Inc, 2005.

2. W. H. Hines, Montgomery, et. al., Probability and Statistics for Engineering, John Wiley & Sons,
Inc., 2003.

3. J.S. Milton and J. C. Arnold, Introduction to Probability and Statistic, 4/e, Tata McGraw-Hill, 2003.

4. Sheldon M. Ross, A First Course in Probability, 9/e, Pearson Education Inc, 2014.

MA6224D GRAPH THEORY AND COMBINATORICS

Prerequisites: NIL

Total hours: 39
Course Outcomes:
Students will be able to

CO1: have sufficient knowledge about Graphs, subgraphs, trees and matrix representation of graphs
CO2: have knowledge about connectivity, traversability and planarity of graphs

COa3: find minimum spanning tree and shortest path in a graph.

CO4: use techniques of generating functions and recurrence relations.

Module 1: (9 hours)

Graphs: subgraphs, paths and cycles, isomorphism, cut vertex, bridge, block, bipartite graph, complement
of a graph, line graph, Degree sequence, Trees, metric in graph, eccentricity , centre, median, centroid,
Matrix representation of graph.

Module 2: (10 hours)

Connectivity: Vertex and Edge connectivity, Whitney's theorem, n - connected graphs Menger's’ theorem.
Traversability: Hamiltonian graphs: Ore’s theorem, Posa’s theorem, Other sufficient conditions for
hamiltonicity, Euler graphs, Planar graphs, Euler formula, platonic bodies. Non planar graphs.

Module 3: (10 hours)

Graph Coloring, chromatic polynomials, The four color problem, The five color theorem.
Digraphs: Connectedness - Acyclic Digraph, Strong digraphs, Tournaments, Directed trees, binary trees,
weighted trees and prefix codes, BFS, DFS, Kruskal’s, Prim’s, Dijkstra’s & Floyd’s algorithms.

Module 4: (10 hours)
Generating functions, Partitions of integers, The exponential generating function, The summation operator,

recurrence relations, first order and second order nonhomogeneous recurrence relations, method of
generating functions.

References:
1. G. Chartrand and P. Zhang, Introduction to Graph Theory, McGraw Hill International Edition, 2005.
2. C.Vasudev, Graph Theory with Applications, New Age international publishers, 2006.
3. R. P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied Introduction, Addison Wesley,

1994.

C. R. Foulds, Graph Theory Applications, Narosa Publishing House, 1994.
F. Harary, Graph Theory, Addison Wesley, 1972.

B. Bollobas, Modern Graph Theory, Springer Verlag, 2005.

ook

MAG6005D OPTIMIZATION TECHNIQUES |

Prerequisites: NIL

Total hours: 39
Course Outcomes:
Students will be able to

CO1: Use mathematical modeling techniques such as linear programming for effective and efficient
utilization of resources in decision making problems.

CO2: Apply Game theory techniques for decision making in competitive situations.

CO3: Apply Dynamic programming technique to sequential decision problems.

CO4: Represent decision making problems through networks and apply suitable techniques for determining
shortest path in the network and maximal flow through network.

Module 1: (10 hours)

Elementary Linear Programming: Systems of linear equations & inequalities — Convex sets — Convex
functions- Formulation of linear programming problems- Theory of Simplex method- Simplex Algorithm-
Charnes M-Method- Two phase method-Duality in linear programming-Dual Simplex method

Module 2: (10 hours)

Advanced Linear Programming: Sensitivity analysis — Parametric programming- Bounded Variables
problem- Transportation problem — Integrality property -MODI method- Degeneracy- Unbalanced problem —
Assignment Problem — Development of Hungarian method — Routing problem.

Module 3: (10 hours)

Dynamic Programming and Game Theory: Nature of Dynamic Programming problem — Bellman's optimality
principle. Cargo loading problem —Replacement problem- Multistage production planning and allocation
problem-Rectangular Games- Two person —Zero sum games-Pure and mixed strategies-2xn and mx 2
games. Relation between theory of games and linear programming.

Module 4: (9 hours)

Network Path Models: Tree Networks — Minimal Spanning Tree - Kruskal’'s Algorithm, Prim’s Algorithm —
Shortest path problems- solution methods — Dijkstra’s Method- Floyd's Algorithm —Network flow Algorithms-
Maximal flow algorithm-The method of Ford and Fulkerson

References:

1. M. S. Bazarra, J. J. Jarvis, and H. D. Sherali, Linear Programming and Network flows, 2/e, John
Wiley, 1990.

M.S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming Theory and Algorithms,
2/e, John Wiley,1993.

G. Hadley, Linear Programming, Narosa Publishing House,1990.

F. S. Hillier and G. T. Lieberman, Infroduction to OR, 7/e, Mc.Grand Hill,2010

H. A. Taha, Operations Research-An infroduction, 6/e, Prentice Hall,India, 1999.

L. R. Foulds, Graph Theory and Applications, Springer, Delhi,1992

N

o0 s w

CS3099D PROJECT

Prerequisites: NIL

Course Outcomes:
Students will be able to

CO1: Conduct literature survey and document a problem specification, identify a problem to work on, and
lay out a plan of action for the project towards solving the problem.

CO2: Design a solution for the problem.

CO3: Implement a solution and collect the observations and results of the work.

CO4: Document the literature survey, problem specification, design and the results and observations from
the work into a report.

Each student shall identify a faculty member as the project guide, with whom they associate for the project
work for a period of one semester.

Student, in consultation with the guide, shall (i) Identify an area of work and conduct a detailed literature
survey of the relevant work in the area, (ii) Identify a problem and prepare a report of the problem she is
going to work on, (iii) Design a solution to the problem identified. This could be done either as an internal
project (at NIT Calicut) or as an internship (at a Company, under guidance from one guide within the
company/R&D organization/Collaborating institution in addition to the internal guide at NIT Calicut). The
solution shall be implemented and the results, observations and conclusions tabulated. The design, results
and conclusions shall be collected to form a project report which shall be presented before a committee of
faculty members designated to evaluate the project work.

References:

1. G. J. Alred, C. T. Brusaw, and W. E. Oliu, The Handbook of Technical Writing, 11/e, Bedford/St.
Martins, 2015.

2. G. R. Marczyk, D. DeMatteo, and D. Festinger, Essentials of Research Design and Methodology,
Wiley, 2005.

CS2002D PROGRAM DESIGN

Prerequisites: ZZ1004D Computer Programming

Total Hours: 52
Course Outcomes:

Students will be able to

CO1:Design and analyse simple iterative and recursive algorithms.

CO2:Design algorithms for sorting and searching and analyze them using mathematical tools, like
formulation and solving of recurrences, asymptotic analysis

CO3: Define simple data structures: arrays, linked lists and trees

CO4: Analyze the correctness of algorithms

Module 1: (13 Hours)

Review of Programming Constructs- Conditional and lterative constructs, Data types, Control Structures,
Functions, Parameter passing- calling conventions, Recursion, Asymptotic notation for complexity analysis.

Module 2: (13 Hours)

Searching - Linear and Binary, Sorting- Insertion and Selection sorting, Divide and conquer, Quick sort,
Merge Sort, Heap Sort, External Sorting.

Module 3: (13 Hours)

Pointers and dynamic memory allocation, Abstract Data Types, Lists, Stacks, Queues, Trees, Search Trees
and traversal algorithms, Heaps and Priority queues.

Module 4: (13 Hours)

Memory Management, Garbage collection algorithms, Storage allocation for objects with mixed sizes,
Buddy systems, Storage compaction.

References:

1. A.V.Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms, Addison-Wesley, 1983.

2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3/e, MIT
Press, 2009.

3. E. Horowitz, S. Sahni, and D. Mehta, Fundamentals of Data Structures in C++, 2/e, Universities
Press, 2008.

CS2006D DISCRETE STRUCTURES

Prerequisites: NIL

Total Hours: 52
Course Outcomes:
Students will be able to :

CO1: Solve elementary combinatorial problems on graphs using recursive formulations and simple
probabilistic methods.

CO2: Prove simple properties of numbers and polynomials using algebraic (group and ring theoretic)
properties.

CO3: Estimate the cardinality of a given infinite set using set theoretic arguments.

CO4: Simplify and construct boolean expressions, and prove some basic theorems from a given set of
boolean axioms.

Module 1: (13 Hours)

Combinatorics: Asymptotic analysis of recurrence - solution to recurrences. Graph Theory: Elementary
properties - planar graphs - Euler’s theorem - Five colour theorem.

Module 2: (13 Hours)

Discrete Probability : Discrete probability spaces, events, random variables, probabilistic method for solving
combinatorial problems. Conditional probability, Bayes Theorem. Independent events. Binomial distribution
and Geometric distribution. Linearity of expectations, method of conditional expectation, applications to
analysis of randomized algorithms. Variance of a random variable. Markov and Chebyshev bounds.

Module 3: (13 Hours)

Algebra: Groups, Lagrange's theorem, Subgroups, Cyclic subgroups, Group Homomorphisms,
Homomorphism theorem, Kernel of a homomorphism, Normal subgroups. Rings and Fields, Ring
Homomorphisms, Ideals. Division rings, integral domains. Structure of the ring Zn and the unit group Zn*,
polynomials over Zp. Order Structures: Equivalence relations, posets, lattices and boolean lattices.

Module 4: (13 Hours)

Logic and Set Theory: Boolean logic, Resolution in propositional logic - introduction to first order logic - set
theory - countable and uncountable sets - diagonalization.

References:

1. R. P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied Introduction, Addison Wesley,
1998.

2. L. Lovasz, J. Pelikan, and K. Vesztergombi, Discrete Mathematics, Springer, 2003.

3. |. M. Copi, Symbolic logic, Prentice Hall, 1979

CS2092D PROGRAMMING LABORATORY

Prerequisites: NIL

Total Hours: 13T+39P

Course Outcomes:

Students will be able to :

CO1: Implement fundamental algorithms like sorting and searching

CO2: Implement simple data structures (arrays, linked lists and trees) and their operations.

CO3: Analyze the computing problems given and assess the suitability of different data structures and
algorithms to solve the problems.

Theory (13 Hours)

Review of dynamic memory allocation - use of pointers - review of recursion. File organization.

Practical (39 Hours)

1. Iterative and recursive algorithms

2. Searching: Binary search implementation

3. Sorting: Heap sort, Quick sort and Merge sort implementation
4. Stack and Queue implementation using linked list

5. Arithmetic expression to postfix

6. Postfix to expression tree, tree traversal and evaluation

7. Binary search tree - insert, delete and search.

References:

1. T.H.Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3/e, MIT
Press, 2009.

2. E. Horowitz, S. Sahni S, and D. Mehta, Fundamentals of Data Structures in C++, 2/e, Universities
Press, 2008.

3. M. A Weiss, Data structures and algorithm analysis, Addison-Wesley 1992.

CS2004D COMPUTER ORGANIZATION

Prerequisites: CS2001D Logic Design

Total Hours: 52
Course Outcomes:
Students will be able to :

CO1: Specify the hardware components of a computer its architecture and performance evaluation

CO2: Specify the instruction set of MIPS architecture to build a basic processor

CO3: Design construct and analyse a basic processor using single cycle, multi cycle, pipelined techniques
CO4: Analyze and specify new memory interactions to improve the performance of a computing system.

Module 1: (13 Hours)

Computer abstraction and technology: basic principles, hardware components, Measuring performance:
evaluating, comparing and summarizing performance.

Instructions: operations and operands of the computer hardware, representing instructions, making
decision, supporting procedures, character manipulation, styles of addressing, starting a program.

Module 2: (13 Hours)
Computer arithmetic: signed and unsigned numbers, addition and subtraction, logical operations,
constructing an ALU, multiplication and division, floating point representation and arithmetic, Parallelism
and computer arithmetic.

Module 3: (13 Hours)

The processor: building a data path, simple and multicycle implementations, microprogramming,
exceptions, Pipelining, pipeline data path and Control , hazards in pipelined processors

Module 4: (13 Hours)

Memory hierarchy: caches, cache performance, virtual memory, common framework for memory
hierarchies

References:
1. D. A. Patterson and J. L. Hennessy, Computer Organisation and Design: The Hardware/Software

Interface, 5/e, Morgan Kaufmann, 2014.
2. V. P.Heuring and H. F. Jordan, Computer System Design and Architecture, Prentice Hall, 2003.

CS2005D DATA STRUCTURES AND ALGORITHMS

Prerequisites: CS2002D Program Design, CS2006D Discrete Structures

Total Hours: 52
Course Outcomes:
Students will be able to :

CO1: Analyze algorithms and data structures applying methods for amortized analysis
CO2: Evaluate methods for performance improvement of dictionaries and mergeable heaps
CO3: Analyze and assess the applicability of fundamental graph algorithms to applications
CO4: Assess and evaluate data structures based on randomization

CO5: Define and apply data structures for distributed computing applications

Module 1: (07 Hours)

Review: Time and space complexity analysis, proof of correctness of algorithms, simple data structures
and applications, Dictionaries, Hashing. Probabilistic Analysis. Amortized Analysis. Methods and examples.

Module 2: (19 Hours)

Graphs,Trees and Positional trees. Review of Binary Trees and Binary Search Trees. Rotations. Red black
Trees, AVL Trees, Splay trees. Mergeable heaps. Fibonacci Heaps. Data structures for disjoint sets - union
by rank and path compression

Module 3: (13 hours)

Graph representation- DFS, BFS, minimum spanning tree problem - Kruskal's algorithm - analysis and
implementation using disjoint set data structure — Prim’s algorithm - Shortest path problem - Dijkstra's
algorithm - analysis and implementation of Prim's and Dijkstra's algorithms using priority queues. Bellman
Ford, Floyd-Warshall algorithms.

Module 4: (13 Hours)

Randomized Data Structures. Treaps, Skip lists. Randomized primality testing. Distributed Hashing and
searching. Persistent Data Structures

References:

1. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3/e, MIT
Press, 2003

A. V. Aho, J. D. Ullman, and J. E. Hopcroft, Data Structures and Algorithms, Addison Wesley, 1983.
D. Kozen, The Design and Analysis of Algorithms, Springer, 1991.

C. Okasaki, Purely Functional Data Structures, Cambridge University press, 1999

rpoN

CS2094D DATA STRUCTURES LABORATORY

Prerequisites: CS2002D Program Design, CS2006D Discrete Structures

Total Hours: 13T+39P
Course Outcomes:
Students will be able to :

CO1: Analyze the computing problems given and assess the suitability of different data structures and
algorithms to solve the problems

CO2: Design and implement solutions to graph based problems

CO3: Design and implement algorithmic solutions within suitable time constraints to face real life practical
situations in the computing industry by following the ethics of computing

Theory (13 Hours)
Review of dynamic memory allocation - use of pointers - review of recursion. File organization.
Practical (39 Hours)

Linear time DFS and BFS implementation with adjacency list representation. (3)
Kruskal's algorithm implementation in O((n+e)log n) complexity. (3)

Prim's algorithm implementation in O((n+e)log n) complexity. (3)

Dijkstra's algorithm implementation in O((n+e)log n) complexity. (3)
Implementation of BST, rotations, and red black trees. (8)

Implementation of splay trees. (6)

Implementation of skip lists. (6)

Implementation of Random Treaps. (7)

NN =

References:

1. T.H.Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, PHI, 1998
2. S. Sahni, Data Structures, Algorithms, and Applications in C++, McGraw Hill, 1998

CS3001D THEORY OF COMPUTATION

Prerequisites: NIL

Total Hours: 52
Course Outcomes:
Students will be able to :

CO1: Classify a given language according to its level in the Chomsky hierarchy and design grammars /
Machines for the language.

CO2 : Construct finite state machines, pushdown automata and turing machines for a given language.

CO3: Prove undecidability of a given problem using diagonal method or reduction.

CO4: Prove NP completeness of a given problem using polynomial time reductions, and prove NP
completeness of SAT by Cook-Levin Theorem.

Module 1: (13 Hours)

Basic concepts of Languages, Automata and Grammar. Regular Languages - Regular expression - finite
automata equivalence, Myhill Nerode theorem and DFA State Minimization, Pumping Lemma and proof for
the existence of non-regular languages.

Module 2: (13 Hours)

Context Free languages, CFL-PDA equivalence, Pumping Lemma and proof for existence of non- Context
Free languages, CYK Algorithm, Deterministic CFLs, Chomsky Schutzenberger Theorem.

Module 3: (13 Hours)

Turing Machines: recursive and recursively enumerable languages, Universality of Turing Machine, Church
Thesis. Chomsky Hierarchy, Undecidability, Reducibility, Undecidability: Recursive and Recursively
enumerable sets.

Module 4: (13 Hours)

Complexity: Time and space complexity classes, hierarchy theorems, reductions and completeness, NP
Completeness and PSPACE completeness, examples.

References:
M. Sipser, Introduction to the Theory of Computation, Thomson, 2001.

1.
2. D. C. Kozen, Automata and Computability, Addison Wesley, 1994.
3. J. C. Martin, Introduction to Languages and the Theory of Computation, McGraw Hill, 2002.

CS3002D DATABASE MANAGEMENT SYSTEMS

Prerequisites: NIL

Total Hours: 39T + 26P
Course Outcomes:
Students will be able to :

CO1: Model, design and normalize databases for real life applications.

CO2: Code and deploy databases for applications using RDBMS like ORACLE
CO3: Query Database applications using Query Languages like SQL

CO4: Deploy efficient IT solutions using free and open software and help the society

Module 1: (10T+8P Hours)

Database System Concepts and architecture, Data Modeling using Entity Relationship (ER) model and
Enhanced ER model, Specialization, Generalization, Data Storage and indexing, Single level and multi level
indexing, Dynamic Multi level indexing using B Trees and B+ Trees.

Module 2: (10T+8P Hours)

The Relational Model, Relational Database design using ER to relational mapping, Relational algebra and
relational calculus, Tuple Relational Calculus, Domain Relational Calculus, SQL.

Module 3: (10T+5P Hours)

Database design theory and methodology, Functional Dependencies and Normalization of relations, Normal
Forms, Properties of relational decomposition, Algorithms for relational database schema design.

Module 4: (9T+5P Hours)

Transaction processing concepts, Schedules and serializability, Concurrency control, Two Phase Locking
Techniques, Optimistic Concurrency Control, Database recovery concepts and techniques, Introduction to
database security.

References:

1. R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, 6/e, Pearson Education, 2011.

2. R. Ramakrishnan and J. Gehrke, Database Management Systems, 3/e, McGraw Hill, 2003.

3. P. Rob and C. Coronel, Database Systems- Design, Implementation and Management, 7/e,
Cengage Learning, 2007.

CS3003D OPERATING SYSTEMS

Prerequisites: NIL

Total Hours: 39T+26P
Course Outcomes:
Students will be able to :

CO1: Specify the working of a computing system from hardware to application program.

CO2: Design a basic operating system

CO3: Define processes, threads, interprocess and thread communication mechanisms and synchronization
techniques.

CO4: Specify the kernel functions - process management, memory management, device management and
file management

Module 1: (9T+6P Hours)

Review of operating system strategies - resources - processes - threads - objects - operating system
organization - design factors - functions and implementation considerations - devices - characteristics -
controllers - drivers - device management - approaches - buffering - device drivers - typical scenarios such
as serial communications - storage devices etc

Module 2: (10T+8P Hours)

Process management - system view - process address space - process and resource abstraction - process
hierarchy - scheduling mechanisms - uniprocessor and multiprocessor scheduling-various strategies -
synchronization - interacting & coordinating processes - semaphores - deadlock - prevention - avoidance -
detection and recovery

Module 3: (10T+6P Hours)

Memory management - issues - memory allocation - dynamic relocation - various management strategies -
virtual memory - paging - issues and algorithms - segmentation - typical implementations of paging &
segmentation systems

Module 4: (10T+6P Hours)

File management - files - implementations - storage abstractions - memory mapped files - directories and
their implementation - protection and security - policy and mechanism - authentication - authorization - case
study of Unix and Linux kernel .Virtual machines — virtual machine monitors — issues in processor, memory
and 1/0 virtualization, hardware support for virtualization.

References:

1. A Silberschatz, P. B. Galvin, and G. Gagne, Operating System Principles, 9/e, John Wiley,2013.
2. W. Stallings, Operating Systems:Internals and design Principles, 7/e, Pearson Education, 2012.
3. A.S. Tanenbaum, Modern Operating Systems, 4/e, Pearson Education, 2017.

4. G. J. Nutt, Operating Systems - A Modern Perspective, 3/e, Pearson Education, 2009.

CS3004D SOFTWARE ENGINEERING

Prerequisites: CS2002D Program Design, CS2006D Discrete Structures

Total hours: 39T+26P
Course Outcomes:
Students will be able to :

CO1: Apply the basic concepts, principles and theories in software engineering to build software systems
from the scratch, considering both technical and managerial aspects.

CO2: Design and implement different phases in the life cycle of software development and identify
appropriate process models.

CO3: Analyze real problems/requirements and design systems by developing specifications and
abstractions to make development of complex systems easy.

Module 1: (10T+5P Hours)

Introduction to Software Engineering — Reasons for software project failure — Similarities and differences
between software and other engineering products. Software Development Life Cycle (SDLC) — Overview of
Phases. Detailed Study of Requirements Phase.

Module 2: (10T+14P Hours)

Principles of software Design - Problem partitioning (subdivision) - Power of Abstraction. Concept of
functional decomposition — UML diagrams - emphasis on class, object, sequence, activity diagrams. ER
diagrams. Introduction to architectural patterns including MVC.

Coding and Testing: Structured programming — Methods and tools for version control - Maintainability.
Types of testing — Specification of test cases — Code review and inspection process.

Module 3: (10T+7P Hours)

Software Project Management: Introduction to metrics. Software Process Models. Costing, Scheduling and
Tracking techniques.
Methods of software licensing including free and open source software licenses.

Module 4: (9T Hours)

Current trends in Software Engineering: Extreme Programming - Values, Principles, Practices. Agile
approach and manifesto. Introduction to Service Oriented Architecture - Entities and Characteristics - Web
Service as an example of SOA Implementation- Evolution of Web Services- Technologies behind Web
Service - SOAP, WSDL,UDDI, BPEL -RESTful Web Service Architecture- Micro Services.

References:

1. R. S. Pressman, Software Engineering: A Practitioner’s Approach, 6/e, McGraw Hill, 2008.

2. T. C. Lethbridge and R. Laganiere, Object Oriented Software Engineering, 1/e, Tata McGraw
Hill,2004.

K. Beck, Extreme Programming, 2/e, Pearson Education, 2006.

C. Fowler, The Passionate Programmer, SPD Pvt. Ltd., 2009.

B w

CS3005D COMPILER DESIGN

Prerequisites: NIL

Total hours: 39T+26P

Course Outcomes:
Students will be able to :

CO1: Specify lexical, syntax, and semantic analysis of programs.
CO2: Translate source code to target code.
CO3: Analyze a program and perform code optimizations.

Module 1: (9T+10P Hours)
Introduction to Programming language translation. Lexical analysis: Specification and recognition of tokens.
Module 2: (10T+10P Hours)

Syntax analysis: Top-down parsing-Recursive descent and Predictive Parsers. Bottom-up Parsing- LR (0),
SLR, and LR (1) Parsers.

Module 3: (10T+6P Hours)

Semantic analysis: Type expression, type systems, symbol tables and type checking.

Intermediate code generation: Intermediate languages. Intermediate representation - Three address code
and quadruples. Syntax-directed translation of declarations, assignments statements, conditional constructs
and looping constructs.

Module 4: (10 Hours)

Runtime Environments: Storage organization, activation records. Introduction to machine code generation
and code optimizations.

References:

1. A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques and Tools,
Pearson Education, 2007.

2. A. W. Appel and J. Palsberg, Modern Compiler Implementation in Java, Cambridge University
Press, 2002.

3. D. Grune, K. van Reeuwijk, H. E Bal, C. J. H. Jacobs, and K. Langendoen. Modern Compiler
Design, 2/e, Springer 2012.

CS3006D COMPUTER NETWORKS

Prerequisites: CS2005D Data Structures and Algorithms

Total hours: 39T+26P

Course Outcomes:

Students will be able to :

CO1: Define functionality and services offered at various layers of TCP/IP protocol stack.
CO2: Design and implement simple application based on socket programming

CO3: Adapt the concepts learned in computer networking to solve the real life scenarios

Module 1: (10T+7P Hours)

Computer Networks and Internet, The network edge, The network core, Network access, Delay and loss,
Protocol layers and services, Application layer protocols, Web 2.0, Socket Programming,

Module 2: (10T+7P Hours)

Transport layer services, UDP, TCP, New transport layer Protocols, Congestion control, New versions of
TCP, Network layer services, Routing, IP, routing in Internet, Router, IPV6, Multicast routing.

Module 3: (10T+7P Hours)

Link layer services, Error detection and correction, Multiple access protocols, ARP, Ethernet, Hubs,
Bridges, Switches, MPLS, VLAN.

Module 4: (09T+5P Hours)

wireless links, Mobility, Multimedia networking, Streaming stored audio and video, Real-time protocols,
Network management.

References:

1. J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach Featuring Internet, 6/e,
Pearson Education, 2012.

2. L. L. Peterson and B. S. Davie, Computer Networks, A systems approach, 5/e, Morgan Kaufmann,
2011.

3. A.S. Tanenbaum and D. J. Wetherall, Computer Networks, 5/e, Pearson, 2013.

CS4023D ARTIFICIAL INTELLIGENCE

Prerequisites: NIL

Total hours: 39T+26P
Course Outcomes:
Students will be able to :

CO1: Apply State-space search strategies for problem solving and implement it using LISP.

CO2: Use heuristic functions in search strategies and Games.

CO3: Apply various knowledge representation mechanisms.

CO4: Identify and choose the appropriate machine learning approach for solving various problems.

Module 1: (10T+4P Hours)

Artificial Intelligence: Introduction,History and Applications; Intelligent Agents;Solving problems by
Searching: Structures and Strategies for state space search- Data driven and goal driven
search,Uninformed Search strategies, Informed(Heuristic) Search Strategies, Heuristic Functions, Local
Search Algorithms and Optimization Problems, Searching with Nondeterministic actions, Constraint
satisfaction, Using heuristics in games- Minimax Search, Alpha Beta Procedure,Stochastic Games.

Module 2: (10T+6P Hours)

Knowledge representation: Knowledge based agents,Propositional calculus, First-Order Logic (Predicate
Calculus),Inference in First-Order Logic, Forward and Backward chaining, Theorem proving by Resolution,
Answer Extraction, Al Representational Schemes- Semantic Nets, Conceptual Dependency, Scripts,
Frames, Planning,Planning and acting in the real world.

Module 3: (11T+8P Hours)

Learning: Learning From Examples, Knowledge in Learning, Learning probabilistic Models, Reinforcement
Learning, The Genetic Algorithm- Genetic Programming, Overview of Expert System Technology,
Introduction to Natural Language Processing.

Module 4: (8T+8P Hours)

Languages and Programming Techniques for Al- Introduction to PROLOG and LISP, Search strategies and
Logic Programming in LISP, Production System examples in PROLOG.

References:
1. S. Russell and P. Norvig, Artificial Intelligence:A Modern Approach, 2/e, Pearson Education, 2002.
2. G. F. Luger, Artificial Intelligence- Structures and Strategies for Complex Problem Solving, 4le,
2002, Pearson Education.
3. E. Rich and K. Knight, Artificial Intelligence, 2/e, Tata McGraw Hill.
4. P.H. Winston, LISP, 3/e, Addison Wesley, 1989.
5. 1. Bratko, Prolog Programming for Atrtificial Intelligence, 3/e, Addison Wesley, 2000.

CS4021D NUMBER THEORY AND CRYPTOGRAPHY

Prerequisites : NIL

Total hours: 39T+26P
Course Outcomes:
Students will be able to :

CO1: Solve number theoretic problems and understand their role in cryptosystems.
CO2: Apply cryptographic techniques for encryption, hashing, and signature.
CO3: Construct mathematical arguments about the security of the cryptosystem.

Module 1: (12T+5P Hours)

Divisibility theory in integers: Extended Euclid’s algorithm. Modular Arithmetic — exponentiation and
inversion. Fermat's Little Theorem, Euler's Theorem. Solution to congruences, Chinese Remainder
Theorem.

Module 2: (15T+15P Hours)

Review of abstract algebra: Study of Ring Zn, multiplicative group Zn* and finite field Zp — Gauss Theorem
(cyclicity of Zp*) - Quadratic Reciprocity.

Primality Testing — Fermat test, Carmichael numbers, Solovay Strassen Test, Miller Rabin Test - detailed
analysis.

Module 3: (12T+6P Hours)

Notions of security: Introduction to one secret key cryptosystem (DES) and one cryptographic hash
scheme (SHA). Public Key Cryptosystems — Diffie Hellman Key Agreement Protocol, Knapsack crypto
systems, RSA. Elgamal encryption and signature scheme. Key Management Protocols

References:

1. H. Delfs and H. Knebl, Introduction to Cryptography: Principles and Applications, Springer-Verlag,
2002.

2. S. Vaudenay, A Classical Introduction to Cryptography: Applications for Communications Security,
Springer, 2009.

3. B. A. Forouzan and D. Mukhopadhyay, Cryptography and Network Security, 2/e, Tata McGraw Hill,
2010.

CS4022D PRINCIPLES OF PROGRAMMING LANGUAGES

Prerequisites: NIL

Total hours: 39T+26P

Course Outcomes:

Students will be able to :

CO1: Summarize the fundamental concepts and constructs in a programming language.
CO2: Develop formal semantics for programming language constructs.

CO3: Model Programming Language features using Lambda Calculus.
CO4: Design type systems for language safety.

Module 1: (10T+7P Hours)

Programming Languages: Concepts and Constructs. Untyped Arithmetic Expressions — Introduction,
Semantics, Evaluation.

Module 2: (10T+6P Hours)
Untyped Lambda Calculus — Basics, Semantics. Programming in Lambda Calculus.
Module 3: (10T+7P Hours)

Typed Arithmetic Expressions — Types and Typing relations, Type Safety.
Simply Typed Lambda Calculus — Function types, Typing relations, Properties of typing.

Module 4: (9T+6P Hours)

Extensions to Simply Typed Lambda Calculus — Unit type, Let bindings, Pairs, Records, Sums, Variants,
References, Exceptions.

References:

1. B. C. Pierce, Types and Programming Languages, MIT Press, 2002.

2. D. A. Schmidt, Programming Language Semantics. In Allen B. Tucker, Ed. Handbook of Computer
Science and Engineering, CRC Press, 1996.

3. L. Cardelli, Type Systems. In Allen B. Tucker, Ed. Handbook of Computer Science and
Engineering, CRC Press, 1996.

4. M. L. Scott, Programming Language Pragmatics, 2/e, Elsevier, 2004.

CS4024D INFORMATION THEORY

Prerequisites: NIL

Total hours: 39

Course Outcomes:

Students will be able to :

CO1: Estimate the entropy of a given discrete source and design appropriate lossless compression
schemes.

CO2: Estimate the capacity of various discrete channel models.
CO3: State and prove simple mathematical properties of secure encryption.

Module 1: (10 Hours)

Foundations: Review of probability theory, entropy and information, random sources, i.i.d and Markov
sources, discrete finite state stationary Markov sources, Entropy rate of stationary sources, Computation of
stationary distributions.

Module 2: (10 Hours)

Source Coding: Prefix and uniquely decodable codes - Kraft's and Macmillan's inequalities - Shannon's
source coding theorem - Shannon Fano code, Huffman code - optimality.

Module 3: (10 Hours)

Channel Coding: BSC and BEC channel models - Channel capacity - Shannon's channel coding theorem -
existence of capaci<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>